Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Vitam Horm ; 123: 109-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717983

RESUMO

Much of our understanding of growth hormone's (GH)'s numerous activities stems from studies utilizing GH receptor (GHR) knockout mice. More recently, the role of GH action has been examined by creating mice with tissue-specific or temporal GHR disruption. To date, 37 distinct GHR knockout mouse lines have been created. Targeted tissues include fat, liver, muscle, heart, bone, brain, macrophage, intestine, hematopoietic stem cells, pancreatic ß cells, and inducible multi-tissue "global" disruption at various ages. In this chapter, a summary of each mouse line is provided with background information on the generation of the mouse line as well as important physiological outcomes resulting from GHR gene disruption. Collectively, these mouse lines provide unique insights into GH action and have resulted in the development of new hypotheses about the functions ascribed to GH action in particular tissues.


Assuntos
Encéfalo , Receptores da Somatotropina , Animais , Camundongos , Receptores da Somatotropina/genética , Coração
2.
Pituitary ; 26(6): 660-674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747600

RESUMO

PURPOSE: Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS. METHODS: Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS. RESULTS: GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes. CONCLUSION: AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.


Assuntos
Obesidade , Receptores da Somatotropina , Humanos , Animais , Suínos , Obesidade/genética , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Tecido Adiposo/metabolismo , Hormônio do Crescimento/metabolismo , Perfilação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo
3.
J Neurosci ; 43(40): 6816-6829, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37625855

RESUMO

Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.


Assuntos
Hormônio do Crescimento , Somatostatina , Feminino , Masculino , Camundongos , Animais , Somatostatina/metabolismo , Hormônio do Crescimento/metabolismo , Ansiedade , Medo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Neurônios/metabolismo
4.
Pituitary ; 26(4): 437-450, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353704

RESUMO

BACKGROUND: Lifelong reduction of growth hormone (GH) action extends lifespan and improves healthspan in mice. Moreover, congenital inactivating mutations of GH receptor (GHR) in mice and humans impart resistance to age-associated cancer, diabetes, and cognitive decline. To investigate the consequences of GHR disruption at an adult age, we recently ablated the GHR at 6-months of age in mature adult (6mGHRKO) mice. We found that both, male and female 6mGHRKO mice have reduced oxidative damage, with males 6mGHRKO showing improved insulin sensitivity and cancer resistance. Importantly, 6mGHRKO females have an extended lifespan compared to controls. OBJECTIVE AND METHODS: To investigate the possible mechanisms leading to health improvements, we performed RNA sequencing using livers from male and female 6mGHRKO mice and controls. RESULTS: We found that disrupting GH action at an adult age reduced the gap in liver gene expression between males and females, making gene expression between sexes more similar. However, there was still a 6-fold increase in the number of differentially expressed genes when comparing male 6mGHRKO mice vs controls than in 6mGHRKO female vs controls, suggesting that GHR ablation affects liver gene expression more in males than in females. Finally, we found that lipid metabolism and xenobiotic metabolism pathways are activated in the liver of 6mGHRKO mice. CONCLUSION: The present study shows for the first time the specific hepatic gene expression profile, cellular pathways, biological processes and molecular mechanisms that are driven by ablating GH action at a mature adult age in males and females. Importantly, these results and future studies on xenobiotic metabolism may help explain the lifespan extension seen in 6mGHRKO mice.


Assuntos
Receptores da Somatotropina , Xenobióticos , Humanos , Adulto , Camundongos , Masculino , Feminino , Animais , Lactente , Xenobióticos/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Fígado/metabolismo , Longevidade/genética , Expressão Gênica , Hormônio do Crescimento/metabolismo
5.
FEBS Open Bio ; 13(7): 1346-1356, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163287

RESUMO

Chagas disease (CD) is one of the most devasting parasitic diseases in the Americas, affecting 7-8 million people worldwide. In vitro and in vivo experiments have demonstrated that growth hormone (GH) serum levels decrease as CD progresses. Interestingly, inactivating mutations in the GH receptor in humans result in Laron syndrome (LS), a clinical entity characterized by increased serum levels of GH and decreased insulin growth factor-1 (IGF-1). The largest cohort of LS subjects lives in the southern provinces of Ecuador. Remarkably, no clinical CD cases have been reported in these individuals despite living in highly endemic areas. In the current ex vivo study, we employed serum from GHR-/- mice, also known as LS mice (a model of GH resistance with high GH and low IGF-1 levels), and serum from bovine GH (bGH) transgenic mice (high GH and IGF-1), to test the effect on Trypanosoma cruzi infection. We infected mouse fibroblast L-cells with T. cruzi (etiological CD infectious agent) and treated them with serum from each mouse type. Treatment with GHR-/- serum (LS mice) significantly decreased L-cell infection by 28% compared with 48% from control wild-type mouse serum (WT). Treatment with bGH mouse serum significantly decreased infection of cells by 41% compared with 54% from WT controls. Our results suggest that high GH and low IGF-1 in blood circulation, as typically seen in LS individuals, confer partial protection against T. cruzi infection. This study is the first to report decreased T. cruzi infection using serum collected from two modified mouse lines with altered GH action (GHR-/- and bGH).


Assuntos
Doença de Chagas , Fator de Crescimento Insulin-Like I , Camundongos , Humanos , Animais , Bovinos , Hormônio do Crescimento/genética , Receptores da Somatotropina/genética , Camundongos Transgênicos , Doença de Chagas/prevenção & controle
7.
Neurosci Lett ; 806: 137236, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37030549

RESUMO

Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Camundongos , Masculino , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Hipotálamo/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36869769

RESUMO

Fibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-ß in the development of WAT fibrosis. Our findings established that female bGH mice, like males, experience a depot-dependent increase in WAT fibrosis, and bGH mice of both sexes have elevated circulating levels of several markers of collagen turnover. Using various methods, TGF-ß signaling was found unchanged or decreased-as opposed to an expected increase-despite the marked fibrosis in WAT of bGH mice. However, acute GH treatments in vivo, in vitro, or ex vivo did elicit a modest increase in TGF-ß signaling in some experimental systems. Finally, single nucleus RNA sequencing confirmed no perturbation in TGF-ß or its receptor gene expression in any WAT cell subpopulations of Sc bGH WAT; however, a striking increase in B lymphocyte infiltration in bGH WAT was observed. Overall, these data suggest that bGH WAT fibrosis is independent of the action of TGF-ß and reveals an intriguing shift in immune cells in bGH WAT that should be further explored considering the increasing importance of B cell-mediated WAT fibrosis and pathology.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Transformador beta , Camundongos , Animais , Bovinos , Masculino , Feminino , Camundongos Transgênicos , Fator de Crescimento Transformador beta/metabolismo , Hormônio do Crescimento/metabolismo , Tecido Adiposo Branco , Fibrose , Tecido Adiposo/metabolismo
9.
J Neuroendocrinol ; : e13254, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36964750

RESUMO

Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.

10.
Metabolites ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36837810

RESUMO

Growth hormone (GH) has established effects on protein metabolism, such as increasing protein synthesis and decreasing amino acid degradation, but its effects on circulating amino acid levels are less studied. To investigate this relationship, metabolomic analyses were used to measure amino acid concentrations in plasma and feces of mice with alterations to the GH axis, namely bovine GH transgenic (bGH; increased GH action) and GH receptor knockout (GHRKO; GH resistant) mice. To determine the effects of acute GH treatment, GH-injected GH knockout (GHKO) mice were used to measure serum glycine. Furthermore, liver gene expression of glycine metabolism genes was assessed in bGH, GHRKO, and GH-injected GHKO mice. bGH mice had significantly decreased plasma glycine and increased hydroxyproline in both sexes, while GHRKO mice had increased plasma glycine in both sexes and decreased hydroxyproline in males. Glycine synthesis gene expression was decreased in bGH mice (Shmt1 in females and Shmt2 in males) and increased in GHRKO mice (Shmt2 in males). Acute GH treatment of GHKO mice caused decreased liver Shmt1 and Shmt2 expression and decreased serum glycine. In conclusion, GH alters circulating glycine and hydroxyproline levels in opposing directions, with the glycine changes at least partially driven by decreased glycine synthesis.

11.
Nat Commun ; 13(1): 6700, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335114

RESUMO

Lymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo. Cryo-electron microscopy reveals that scLCDV1-VILP engages IGF1R in a unique manner, inducing changes in IGF1R conformation that led to separation, rather than juxtaposition, of the transmembrane segments and hence inactivation of the receptor. Thus, scLCDV1-VILP is a natural peptide with specific antagonist properties on IGF1R signaling and may provide a new tool to guide development of hormonal analogues to treat cancers or metabolic disorders sensitive to IGF-1 without affecting glucose metabolism.


Assuntos
Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1 , Humanos , Camundongos , Animais , Receptor IGF Tipo 1/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Microscopia Crioeletrônica , Peptídeos/farmacologia
12.
J Bone Miner Res ; 37(11): 2201-2214, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069368

RESUMO

Excess in growth hormone (GH) levels, seen in patients with acromegaly, is associated with increases in fractures. This happens despite wider bones and independent of bone mineral density. We used the bovine GH (bGH) transgenic mice, which show constitutive excess in GH and insulin-like growth factor 1 (IGF-1) in serum and tissues, to study how lifelong increases in GH and IGF-1 affect skeletal integrity. Additionally, we crossed the acid labile subunit (ALS) null (ALSKO) to the bGH mice to reduce serum IGF-1 levels. Our findings indicate sexually dimorphic effects of GH on cortical and trabecular bone. Male bGH mice showed enlarged cortical diameters, but with marrow cavity expansion and thin cortices as well as increased vascular porosity that were associated with reductions in diaphyseal strength and stiffness. In contrast, female bGH mice presented with significantly smaller-diameter diaphysis, with greater cortical bone thickness and with a slightly reduced tissue elastic modulus (by microindentation), ultimately resulting in overall stronger, stiffer bones. We found increases in C-terminal telopeptide of type 1 collagen and procollagen type 1 N propeptide in serum, independent of circulating IGF-1 levels, indicating increased bone remodeling with excess GH. Sexual dimorphism in response to excess GH was also observed in the trabecular bone compartment, particularly at the femur distal metaphysis. Female bGH mice preserved their trabecular architecture during aging, whereas trabecular bone volume in male bGH mice significantly reduced and was associated with thinning of the trabeculae. We conclude that pathological excess in GH results in sexually dimorphic changes in bone architecture and gains in bone mass that affect whole-bone mechanical properties, as well as sex-specific differences in bone material properties. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Acromegalia , Fator de Crescimento Insulin-Like I , Bovinos , Masculino , Animais , Feminino , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Osso e Ossos/metabolismo , Densidade Óssea , Camundongos Transgênicos , Colágeno Tipo I
13.
Mol Nutr Food Res ; 66(23): e2200439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153842

RESUMO

SCOPE: Fighting obesity and associated comorbidities through dieting is not always sustained and results in a subsequent weight gain, a phenomenon referred to as weight cycling. Diet is among the most important factors in modifying the composition of gut microbiota. The objective of this work is to determine whether weight cycling affects the composition and the predicted function of mouse fecal bacteria on a long-term basis. METHODS AND RESULTS: Mice fed for 40 weeks with either high fat (HF), low fat (LF), or cycled diets (starting and ending by one of the two diets, and the reverse) exhibit a bacterial profile specific to each of the four groups. A higher proportion of Firmicutes and Bacteroidota phyla are observed in mice on Hf and LF diet, respectively. The proportion of functions dedicated to amino acid metabolism is higher in mice on HF or LF/HF diets, whereas the mice on LF or HF/LF diets have a higher proportion of functions involve in carbohydrate metabolism and vitamin B biosynthesis. CONCLUSION: Compared to continuous HF or LF diets, cyclic diet specifically alters the composition and function of the mouse fecal microbiota, suggesting that fight against weight gain should be considered on a long-term basis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Ciclo de Peso , Dieta Hiperlipídica/efeitos adversos , Aumento de Peso , Bactérias , Camundongos Endogâmicos C57BL
14.
Endocrinology ; 163(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952979

RESUMO

Growth hormone receptor knockout (GHRKO) mice have been used for 25 years to uncover some of the many actions of growth hormone (GH). Since they are extremely long-lived with enhanced insulin sensitivity and protected from multiple age-related diseases, they are often used to study healthy aging. To determine the effect that adipose tissue has on the GHRKO phenotype, our laboratory recently created and characterized adipocyte-specific GHRKO (AdGHRKO) mice, which have increased adiposity but appear healthy with enhanced insulin sensitivity. To test the hypothesis that removal of GH action in adipocytes might partially replicate the increased lifespan and healthspan observed in global GHRKO mice, we assessed adiposity, cytokines/adipokines, glucose homeostasis, frailty, and lifespan in aging AdGHRKO mice of both sexes. Our results show that disrupting the GH receptor gene in adipocytes improved insulin sensitivity at advanced age and increased lifespan in male AdGHRKO mice. AdGHRKO mice also exhibited increased fat mass, reduced circulating levels of insulin, c-peptide, adiponectin, resistin, and improved frailty scores with increased grip strength at advanced ages. Comparison of published mean lifespan data from GHRKO mice to that from AdGHRKO and muscle-specific GHRKO mice suggests that approximately 23% of lifespan extension in male GHRKO is due to GHR disruption in adipocytes vs approximately 19% in muscle. Females benefited less from GHR disruption in these 2 tissues with approximately 19% and approximately 0%, respectively. These data indicate that removal of GH's action, even in a single tissue, is sufficient for observable health benefits that promote long-term health, reduce frailty, and increase longevity.


Assuntos
Fragilidade , Resistência à Insulina , Adipócitos , Animais , Feminino , Hormônio do Crescimento , Resistência à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Longevidade/genética , Masculino , Camundongos , Camundongos Knockout , Receptores da Somatotropina/genética
15.
Front Oncol ; 12: 936145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865483

RESUMO

Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.

16.
Brain Res ; 1791: 147995, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779583

RESUMO

Growth hormone (GH)-responsive neurons regulate several homeostatic behaviors including metabolism, energy balance, arousal, and stress response. Therefore, it is possible that GH-responsive neurons play a role in other responses such as CO2/H+-dependent breathing behaviors. Here, we investigated whether central GH receptor (GHR) modulates respiratory activity in conscious unrestrained mice. First, we detected clusters of GH-responsive neurons in the tyrosine hydroxylase-expressing cells in the rostroventrolateral medulla (C1 region) and within the locus coeruleus (LC). No significant expression was detected in phox2b-expressing cells in the retrotrapezoid nucleus. Whole body plethysmography revealed a reduction in the tachypneic response to hypoxia (FiO2 = 0.08) without changing baseline breathing and the hypercapnic ventilatory response. Contrary to the physiological findings, we did not find significant differences in the number of fos-activated cells in the nucleus of the solitary tract (NTS), C1, LC and paraventricular nucleus of the hypothalamus (PVH). Our finding suggests a possible secondary role of central GH action in the tachypneic response to hypoxia in conscious mice.


Assuntos
Hipercapnia , Núcleo Solitário , Animais , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Hipóxia/metabolismo , Camundongos , Núcleo Solitário/metabolismo
17.
Endocrinology ; 163(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803590

RESUMO

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.


Assuntos
Neurônios GABAérgicos , Receptores da Somatotropina , Animais , Feminino , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores para Leptina/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
18.
Front Physiol ; 13: 867921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665221

RESUMO

Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH's effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.

19.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617141

RESUMO

The gut microbiome has an important role in host development, metabolism, growth, and aging. Recent research points toward potential crosstalk between the gut microbiota and the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Our laboratory previously showed that GH excess and deficiency are associated with an altered gut microbial composition in adult mice. Yet, no study to date has examined the influence of GH on the gut microbiome over time. Our study thus tracked the effect of excess GH action on the longitudinal changes in the gut microbial profile (ie, abundance, diversity/maturity, predictive metabolic function, and short-chain fatty acid [SCFA] levels) of bovine GH (bGH) transgenic mice at age 3, 6, and 12 months compared to littermate controls in the context of metabolism, intestinal phenotype, and premature aging. The bGH mice displayed age-dependent changes in microbial abundance, richness, and evenness. Microbial maturity was significantly explained by genotype and age. Moreover, several bacteria (ie, Lactobacillus, Lachnospiraceae, Bifidobacterium, and Faecalibaculum), predictive metabolic pathways (such as SCFA, vitamin B12, folate, menaquinol, peptidoglycan, and heme B biosynthesis), and SCFA levels (acetate, butyrate, lactate, and propionate) were consistently altered across all 3 time points, differentiating the longitudinal bGH microbiome from controls. Of note, the bGH mice also had significantly impaired intestinal fat absorption with increased fecal output. Collectively, these findings suggest that excess GH alters the gut microbiome in an age-dependent manner with distinct longitudinal microbial and predicted metabolic pathway signatures.


Assuntos
Microbioma Gastrointestinal , Hormônio do Crescimento Humano , Animais , Bovinos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Hormônio do Crescimento/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...